

CPC Unified Precipitation Climatology, Regime-dependant bias-correction and Forecast Verification

Dan Collins and David Unger Climate Prediction Center NCEP/NOAA

CPC Unified Precipitation dataset application for NAEFS forecasts

- Station-based 0.5x0.5 degree gridded precipitation analysis
 - ¼ degree resolution available over the U.S.
 - Land-only
 - Merging with satellite data expected this year to produce global analysis
- 1979 to 2010 (present)
 - Daily resolution.
- Model bias-correction occurs on 5 and 7 day accumulated precipitation forecasts.

Development of a climatology using CPC Unified Precipitation dataset

- Need full distribution climatology as opposed to simply above and below normal category threshold values
 - Allows determination of extremes.
 - Non-normal distribution.
 - Difficult to parameterize the distribution for all locations fitting same type of distribution everywhere

Obstacles

- Discontinuous variable with many zeros
- Some grid points with few positive values at all
- Limited independent data to sample

Solution:

- Non-parametric distribution
- To compensate for sampling errors, distribution is smoothed using kernel distribution function
- Width of kernel proportional to standard deviation of the observations

Climatology derived from precipitation observations as sample of true climatology distribution

5th NAEFS Workshop D Collins

Climatology probability of precipitation used to determine locations that are dry normally

Climatologically dry areas are only forecast to be near-normal or above-normal;

Never should be below-normal

Discontinuity at zero precipitation

- Minimum accurately measurable and predictable precipitation chosen.
 - Using 1 mm as minimum measurable precipitation, but model may have little or no skill below 2-3 mm
 - Log(P) < 0 are separated for distribution
- Remaining measurable amounts used to create conditional distribution for measurable precipitation forecast and observation.
- Log precipitation used for both observational analysis and model data.
 - Decreases skewness; often too much
 - Errors are considered proportional to precipitation amount

Regime-dependent Bias-correction

- Bias correction on log (precipitation) at multiple threshold values from 1 mm to ~150 mm (6 inches)
- Bias is dependent on precipitation amount
 - Allows bias correction of probability of precipitation at the 1 mm threshold; however, model representation of low precipitation amounts lack skill.

Regime-dependent Bias-correction

- Each precipitation event affects nearest thresholds
 - Threshold values are pushed towards neighboring values.
 - Change is related to closeness of next threshold creating a rippling or slinky effect when a thresholds move
 - Green forecast move thresholds up, Red moves them down, Blue members have no effect

10 member ensemble forecasts

Week-2 Precip 1 mm threshold bias estimate for April 2009

Wet bias over relatively dry, high latitude regions

1 mm used as "zero" threshold in forecasts

Limited ability to bias correct due to zero measurable precipitation discontinuity & poor model representation

Week-2 Precip 20 & 33 mm threshold bias estimate for April

Wet bias widespread but especially along Pacific & Atlantic Coasts and much of Eastern N. America

Dry biases appear related to individual extreme wet events

6-10 day and Week-2 CPC Precipitation Forecasts

- Because CPC Unified precipitation analysis is currently higher resolution (½ degree) than model data (1 degree)
 - Model forecasts are "downscaled" by the biascorrection process.
- Appears to be one of more skillful forecast tools, especially for week-2, when skill is low.

25 mm or 1 inch threshold probability of exceedence

3-Category forecasts for above (left) and below (right) normal week-2 precipitation

Week-2 Precipitation Heidke SS DJF 2009-2010 & JJA 2009

0.17 HSS over Mexico during this winter

3-Category (Above, Below and Near-Normal) Rank Probability Skill Score

Above-Normal bias ratio

3-Category (Above, Below and Near-Normal) Rank Probability Skill Score (Top) & Bias in abovenormal forecast frequency

CPC Week-2 NAEFS Temperature: Winter Verification Heidke Skill Score

Official temperature forecast verification, Heidke Skill Score

Official Week-2 precipitation forecast verification, Heidke Skill Score

Heidke Skill Scores

Week-2 Temp Verification: Tercile skill scores

- No appreciable change in the Heidke skill score (HSS) with the addition of CMC ensemble to the NCEP ensemble
- Significant improvement in the probabilistic skill determined by a 3category rank probability skill score (RPSS) and continuous RPSS.
- PDF calibration increases probabilistic skill

Week-2 Temperature: Reliability of Probabilities

- Reliability improves with addition of CMC ensemble to NCEP alone
- Reliability closer to climatology
- Climatology forecast reliability indicates November through April colder than climatology

The North American Ensemble Forecast System (NAEFS)

